


abstract

Principal component analysis (PCA) is a technique that is useful for the
compression and classification of data. The purpose is to reduce the
dimensionality of a data set (sample) by finding a new set of variables,
smaller than the original set of variables, that nonetheless retains most
of the sample's information.

By information we mean the variation present in the sample,

given by the correlations between the original variables. The new
variables, called principal components (PCs), are uncorrelated, and are
ordered by the fraction of the total information each retains.




overview

geometric picture of PCs

algebraic definition and derivation of PCs

usage of PCA

astronomical application




Geometric picture of principal components (PCs)

A sample of n observations in the 2-D space X = (Il , L 2)

to account for the variation in a sample
in as few variables as possible, to some accuracy




Geometric picture of principal components (PCs)

the 1s a minimum distance fit to a line in X space

the 1s a minimum distance fit to a line
in the plane perpendicular to the 15t PC




Algebraic definition of PCs

Given a sample of n observations on a vector of p variables
X = (T1,29,...,T,)

define the of the sample
by the linear transformation

p
— Z Aj1 g
i=1

where the vector A] — (an, A1y« -y apl)

1s chosen such that




Algebraic definition of PCs

Likewise, define the of the sample
by the linear transformation

k=1,...,p
where the vector AL — (alk, A2k y + - -y apk)

1s chosen such that var [ od k] is maximum

subject to for k> 1> 1

and to agak — 1




Algebraic derivation of coefficient vectors ay.

To find A7 first note that

= (21) — (1)’

Z aﬂaﬂ(xixj} — Z ailaj1<xi><xj>

ij=1 ij=1

p
Z ailajlsij where Sfij — O-xz-a:j — <£C7JZIZJ> — <ZUZ><CCJ>
1,7=1

for the variables x = (xq, 2o, . . . ,:ij)




Algebraic derivation of coefficient vectors ay.

To find A1 maximize V&I’[Zl] subject to arlral — |

Let A be a Lagrange multiplier

then maximize a?Sal _ )\(arfal _ 1)

by differentiating... Sa; — Aa; =0
— (S — )\Ip)al = (

therefore




Algebraic derivation of aj.

We have maximized

V&T[Zl] — arfSal — a?Alal — Al

So )\1 1s the eigenvalue of S




Algebraic derivation of coefficient vectors ay.

To find the next coefficient vector A9 maximize VAl [22]

subject to (j()v[ZQ7 Zl] — ()

T

andto a,a, = 1

First note that
COV[ZQ7 21] — arfSaQ — Alarlrag

then let A and ¢ be Lagrange multipliers, and maximize

a,Sa, — \aya, — 1) — ¢a, a,




Algebraic derivation of coefficient vectors ay.

We find that A9 is also an eigenvector of S

whose eigenvalue A = )\, is the second largest.

In general

The k" largest eigenvalue of S is the variance of the kt PC.

The k" PC £ retains the k™ greatest fraction
of the variation in the sample.




Algebraic formulation of PCA

Given a sample of n observations
on a vector of p variables X

define a vector of p PCs Z

according to

where A 1s an orthogonal p x p matrix

whose k'™ column is the k™ eigenvector Qlf. of )

Then 1S the

being diagonal with elements Az j = )\7,(57, J




usage of PCA: Probability distribution for sample PCs

If (1) the n observations of X 1in the sample are

(11) X 1s drawn from an underlying population that
follows a (Gaussian) distribution
with known covariance matrix S

(n—1)S ~ W,(S,n — 1)

where Wp 1s the Wishart distribution

else utilize a approximation




usage of PCA: Probability distribution for sample PCs

If (1) (n — 1)S follows a Wishart distribution &

(11) the population eigenvalues 5\ 1. are all distinct

all the )\, are independent of all the a,,

)\E()\l,)\g,...,)\p) AL

are jointly and

(A) = A

(ar) = ay

(a tilde denotes a population quantity)




usage of PCA: Probability distribution for sample PCs

and

(n—1) =IFk (X —Xp)? b=k

Ak}‘k’%‘jkéz’k’ I # k'/

CoV|ajk, ajp| =

(a tilde denotes a population quantity)




usage of PCA: Inference about population PCs

X follows a p-variate normal distribution

analytic expressions exist™* for

'sof Ak, ay,and S

for ), and ay

for Ay and Q;

bootstrap and jackknife approximations exist

*see references, esp. Jolliffe




usage of PCA: Practical computation of PCs

In general it 1s useful to define

Lp

L1 )
’ ’ [ ] L ] [ ] 7
2 ) 2

X — X =

It the {Lf are each measured about their sample mean

then the covariance matrix S>i< of x*

will be equal to the of X

the PCs z* = A*'x* will be




usage of PCA: Practical computation of PCs

Given a sample of n observations on a vector X of p variables ;.

(each measured about 1ts sample mean)

compute the covariance matrix § —

where 1s the n x p matrix

whose ith row is the ith obsv.

Then compute the n x p matrix
whose i row is the

for the it observation.




usage of PCA: Practical computation of PCs

Write X — ZAT to




usage of PCA: Data compression

Because the k" PC retains the k™ greatest fraction of the variation

m
m
X; = Z Zik ALk
k=1




usage of PCA: Data compression

from p to m < p by approximating X 2~ X — 7™M AmT

where 7" is the portion of Z

and A" is the portion of A




astronomical application: PCs for elliptical galaxies

Rotating to PC in B — X space improves relation

as a distance indicator

Dressler, et al. 1987




astronomical application: Eigenspectra (KL transform)

Connolly, et al. 1995
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That’s no quasar.

It’s a space station.




